Las enzimas son moléculas de proteínas que tienen la capacidad de facilitar y acelerar las reacciones químicas que tienen lugar en los tejidos vivos, disminuyendo el nivel de la "energía de activación" propia de la reacción. Se entiende por "energía de activación" al valor de la energía que es necesario aplicar (en forma de calor, electricidad o radiación) para que dos moléculas determinadas colisionen y se produzca una reacción química entre ellas. Generalmente, las enzimas se nombran añadiendo la terminación "asa" a la raíz del nombre de la sustancia sobre la que actúan.
Las enzimas no reaccionan químicamente con las sustancias sobre las que actúan (que se denominan sustrato), ni alteran el equilibrio de la reacción. Solamente aumentan la velocidad con que estas se producen, actuando como catalizadores. La velocidad de las reacciones enzimáticas dependen de la concentración de la enzima, de la concentración del sustrato (hasta un límite) y de la temperatura y el PH del medio.
Enzimas digestivas
Las enzimas adoptan una estructura tridimensional que permite reconocer a los materiales específicos sobre los que pueden actuar -substratos-. Cada una de las transformaciones, que experimentan los alimentos en nuestro sistema digestivo, está asociada a un tipo específico de enzima. Estas enzimas son las llamadas enzimas digestivas. Cada enzima actúa sobre un sólo tipo de alimento. Cada tipo de enzima trabaja en unas condiciones muy concretas de acidez. Cuando las enzimas no pueden actuar o su cantidad es insuficiente, se producen procesos de fermentación y putrefacción en los alimentos a medio digerir. En este caso, son los fermentos orgánicos y las bacterias intestinales las encargadas de descomponer los alimentos.
Enzimas intracelulares
Otras enzimas actuan en el interior de las células, transformando los nutrientes que les llegan a través de la sangre en otras sustancias que forman parte del metabolismo celular. Las enzimas intracelulares también son los responsables de los procesos de degradación celular. En estos procesos se obtienen nutrientes elementales a partir de los materiales estructurales propios de las células cuando el aporte mediante la dieta se interrumpe (por ejemplo, durante el ayuno), o cuando la célula no puede utilizar los nutrientes de la sangre (por ejemplo, en la diabetes).
Particularidades
Hay enzimas que necesitan la participación de otros compuestos químicos no proteicos, denominados cofactores, para poder actuar realmente como enzimas. A la parte proteica sin el cofactor se le llama apoenzima, y al complejo enzima-cofactor holoenzima. También existen enzimas que se sintetizan en forma de un precursor inactivo llamado proenzima. Cuando se dan las condiciones adecuadas en las que la enzima debe actuar, se segrega un segundo compuesto que activa la enzima.Las enzimas actuan generalmente sobre un sustrato específico, como la ureasa, o bien sobre un conjunto de compuestos con un grupo funcional específico, como la lipasa o las transaminasas. La parte de la enzima que "encaja" con el sustrato para activarlo es denominada centro activo, y es el responsable de la especificidad de la enzima. En algunos casos, compuestos diferentes actuan sobre el mismo sustrato provocando una misma reacción, por lo que se les llama isoenzimas.
Estructuras y mecanismo
Las enzimas son generalmente proteínas globulares que pueden presentar tamaños muy variables, desde 62 aminoácidos como en el caso del monómero de la 4-oxalocrotonato tautomerasa, hasta los 2.500 presentes en la sintasa de ácidos grasos.
Las actividades de las enzimas vienen determinadas por su estructura tridimensional. Casi todas las enzimas son mucho más grandes que los sustratos sobre los que actúan, y solo una pequeña parte de la enzima (alrededor de 3 a 4 aminoácidos) están directamente involucrados en la catálisis. La región que contiene estos residuos encargados de catalizar la reacción es conocida como centro activo. Las enzimas también pueden contener sitios con la capacidad de unir cofactores, necesarios a veces en el proceso de catálisis, o de unir pequeñas moléculas, como los sustratos o productos (directos o indirectos) de la reacción catalizada. Estas uniones pueden incrementar o disminuir la actividad enzimática, dando lugar así a una regulación por retroalimentación.
Al igual que las demás proteínas, las enzimas se componen de una cadena lineal de aminoácidos que se pliegan durante el proceso de traducción para dar lugar a una estructura terciaria tridimensional de la enzima, susceptible de presentar actividad. Cada secuencia de aminoácidos es única y por tanto da lugar a una estructura única, con propiedades únicas. En ocasiones, proteínas individuales pueden unirse a otras proteínas para formar complejos, en lo que se denomina estructura cuaternaria de las proteínas.
La mayoría de las enzimas, al igual que el resto de las proteínas, pueden ser desnaturalizadas si se ven sometidas a agentes desnaturalizantes como el calor, los pHs extremos o ciertos compuestos como el SDS. Estos agentes destruyen la estructura terciaria de las proteínas de forma reversible o irreversible, dependiendo de la enzima y de la condición.
Especificidad
Las enzimas suelen ser muy específicas tanto del tipo de reacción que catalizan como del sustrato involucrado en la reacción. La forma, la carga y las características hidrofílicas/hidrofóbicas de las enzimas y los sustratos son los responsables de dicha especificidad. Las enzimas también pueden mostrar un elevado grado de estereoespecificidad,regioselectividad y quimioselectividad.
Algunas de estas enzimas que muestran una elevada especificidad y precisión en su actividad son aquellas involucradas en la replicación y expresión del genoma. Estas enzimas tienen eficientes sistemas de comprobación y corrección de errores, como en el caso de la ADN polimerasa, que cataliza una reacción de replicación en un primer paso, para comprobar posteriormente si el producto obtenido es el correcto. Este proceso, que tiene lugar en dos pasos, da como resultado una media de tasa de error increíblemente baja, en torno a 1 error cada 100 millones de reacciones en determinadas polimerasas de mamíferos. Este tipo de mecanismos de comprobación también han sido observados en la ARN polimerasa, en la ARNt aminoacil sintetasa y en los ribosomas.
Aquellas enzimas que producen metabolitos secundarios son denominadas promiscuas, ya que pueden actuar sobre una gran variedad de sustratos. Por ello, se ha sugerido que esta amplia especificidad de sustrato podría ser clave en la evolución y diseño de nuevas rutas biosintéticas.
Activadores
Algunas enzimas necesitan para su actividad iones inorgánicos específicos que reciben el nombre de activadores. Los activadores que se necesitan con más frecuencia son los iones de hierro, cobre, manganeso, magnesio, cobalto y zinc. De ordinario, sólo un ion funciona con una determinada enzima, pero en ciertos casos se pueden sustituir ciertos iones por otros, persistiendo una actividad enzimática satisfactoria.
Inhibidores
Las moléculas que regulan la actividad enzimática inhibiendo su actividad pueden clasificarse en reversibles e irreversibles. Las irreversibles se unen covalentemente a la enzima y son útiles en farmacología (penicilina, aspirina).
Las reversibles pueden clasificarse, a su vez, en competitivas y no competitivas. Las competitivas modifican la Km del enzima ya que se unen al centro activo de éste e impiden la unión con el sustrato (se necesitará más para activar las enzimas). Las no competitivas, se unen a otro lugar de la enzima, modificando la Vmáx. (velocidad en que se forma producto por unidad de tiempo) ya que al unirse, el enzima queda inactiva.
Clasificación
Existe una clasificación normalizada con 6 categorías principales dependiendo de la reacción que catalice la enzima. Cada enzima está clasificada mediante su número EC.
Oxidorreductasas
Catalizan reacciones de oxidorreducción o redox. Precisan la colaboración de las coenzimas de oxidorreducción (NAD+, NADP+, FAD) que aceptan o ceden los electrones correspondientes; tras la acción catalítica, estas coenzimas quedan modificadas en su grado de oxidación, por lo que deben ser transformadas antes de volver a efectuar la reacción catalítica.
Ejemplos: deshidrogenasas, peroxidasas.
Transferasas
Transfieren grupos activos (obtenidos de la ruptura de ciertas moléculas) a otras sustancias receptoras. Suelen actuar en procesos de interconversión de monosacáridos, aminoácidos, etc.
Ejemplos: transaminasas, quinasas.
Hidrolasas
Verifican reacciones de hidrólisis con la consiguiente obtención de monómeros a partir de polímeros. Actúan en la digestión de los alimentos, previamente a otras fases de su degradación. La palabra hidrólisis se deriva de hidro 'agua' y lisis 'disolución'.
Ejemplos: glucosidasas, lipasas, esterasas.
Isomerasas
Actúan sobre determinadas moléculas obteniendo de ellas sus isómeros de función o de posición, es decir, catalizan la racemizacion y cambios de posición de un grupo en determinada molécula obteniendo formas isoméricas . Suelen actuar en procesos de interconversión.
Ejemplo: epimerasas (mutasa).
Liasas
Catalizan reacciones en las que se eliminan grupos (H2O, CO2 y NH3) para formar un doble enlace o añadirse a un doble enlace, capaces de catalizar la reducción en un sustrato. El sustrato es una molécula, la cual, se une al sitio activo de la enzima para la formación del complejo enzima-sustrato. El mismo, por acción de la enzima, es transformado en producto y es liberado del sitio activo, quedando libre para recibir otro sustrato.
Ejemplos: descarboxilasas, liasas.
Ligasas
Realizan la degradación o síntesis de los enlaces denominados "fuertes" mediante al acoplamiento a sustancias de alto valor energético (como el ATP).
Ejemplos: sintetasas, carboxilasas.
No hay comentarios:
Publicar un comentario